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In the problem of conflict control with a each of information, formalized as a differential game [1-11] in a system with delays, 
a Hamilton-Jacobi type equation is written for the value functional using the concept of co-invariant derivatives [12]. Like that 
set out earlier [10], the corresponding generalized minimax solution of this equation is considered. Control strategies extremal 
to the given solution are constructed. It is proved that these strategies form a saddle point of the game, while the value functional 
is identical with the minimax solution of the equation. © 2000 Elsevier Science Ltd. All rights reserved. 

1. A D I F F E R E N T I A L  G A M E  W I T H  H E R E D I T A R Y  I N F O R M A T I O N  

Consider a system with delay 

dx[t]l dt = f(t,x[t,[.]t],u,u ), t, <~ t o <~ t<~ T 
(1.1) 

x E R  n, u E U t z R  r, v ~ V c R  m 

where x is a phase vector, u and v are control actions of the first and second players respectively, t , ,  to 
and T are specified instants of time (to < T), U and V are known compacts, and x[t,[.]t] = {x['r], t ,  ~< 
"r ~< t} is the history of motion that has occurred up to the instant of time t. 

Let C([t,, T], R ~) be the space of continuous functions x(.) = {x[t] E R ~, t ,  ~< t ~< T}. 
We will denote by G the set of pairs g = (t, x[t ,  [.]t]), for which to ~< t ~< T, and x[t,  [.]t] is a part (from 

t ,  to t) of a certain function from C([t,, T], /~).  On G we shall define the metric 

P(gl,g~) = max{p*(gl,g2), P*(g2,gl)} (1.2) 

where 

gl = (h,x°)[t*I']tl])~G, g2 = (t2,x(2)It,[']t2])~G 

p*(gi+t,g2_i)= max min max{ l~-r l l ,  llx"+l)[~]-xC2-i)[~]ll}, 
t ,  ~ g t i +  I t ,  ~ 'q~t2_ i 

i=0,1 

Here and below, 11.11 is the vector Euclidean norm. 
Below, the properties of continuity with respect to (t,x[t,[.]t]) are understood with respect to changes 

in the metric p(., .) [Eq (1.2)]. 
For example, the functionz(t,x[t,[.]t]) : G --->1~ will be continuous in G if, for anyg* = (t*,x*[t,[.]t*]) 
G and e > 0, 8 > 0 is found such that, for all g = (t, x[t,[.]t]) [ ~ G, such that p(g, g*) ~< 8, the 

following inequality is satisfied 

11 z(t ,x  [t,[.]t ] ) -  z(t,x[t,[.]t])ll<~e 

In (1.1) the function f(t, x[t.[.]t], u, ~) ~ R n is defined on G x U × V and satisfies the following 
requirements. 

(lf) The function f(t, x[t.[.]t], u, ~) is continuous with respect to the set of their arguments on 
G x U × V .  

(2/) For any compact D C C([t., T], R n) a there is a number A > 0 such that, for all t ~ [to, T], 
u ~ U, ~ E V and x(.) E D, x"(.) E D, the following estimate (the Lipschitz condition with respect to 
x[t.  [-]t]) holds 

tPrikL Mat. Mekh. Vol. 64, No. 2, pp. 252-263, 2000. 

243 



244 N. Yu. Lukoyanov 

II f ( t ,  x ' I t ,  [.]t], u,v ) - f ( t ,  x"[t ,  [.]t], u,v ) II ~< A max II x'[x] - x '[x]  II 

(3f) A number  × > 0 exists such that, at all (t ,x[t .[ .]t] ,  u, ~)  ~ G x U x V, the following inequality 
is satisfied 

II f i t ,  x[t, [.]t], u,o )I1~< ×(1 + max II x[x] II) 

(4f) For any (t, x[t .[ .]t]) ~ G and s E R n, the following equality exists (the saddle point condition in 
a small game [1-3]). 

min max(s, f i t ,  x[t. [-]t], u,u )) = max min(s, f (t, x[t.[.]t], u,u )) 
u~U o~V u~V u~U 

Here and below, (., .) is the scalar product  of vectors. 
Suppose the initial state 

gO = (tO, xO[t.[.]to]) ~ G, t o < T 

of system (1.1) is specified. The Borel measurable realizations 

u[t°[.]T) = {u[t] ~ U, t o ~< t < T}, v It°I-]T) = {v [t] ~ V,t  0 <~ t < T} 

are admissible. 
With conditions (if)-(3/), from state gO such realizations naturally give rise to the motion of system 

(1.1)--the function x(.) e C([t,, T], An), which is identical with x°[t.[.]to] on [t., t °] and, when 
t ~ [t °, T], satisfies the equality 

t 

x [ t l = x [ t ° ] +  J f( t ,x[t ,[ .]X],  u[X], u[x])dx 
l |) 

where the integral is understood in the Lebesgue sense. 
The quality index - /o f  this motion is specified by the continuous functional tr : C([t0, T], R ~) t---> R, 

so that 

7= a(x[tof'lT]) (1.3) 

The objective of the first player is to minimize % and that of the second is to maximize it. 
The control strategies of the first and second players will be termed arbitrary functions uq ,  x[t,[.]t]) 

U and ~(t,  x[t.[.]t]) ~ V, respectively, where (t, x[t .[.]t]) ~ G and t E [t ° , /1 .  The selected strategies 
u(.) and subdivision 

A 6 = {t i :t  I = t °, 0 < ti+ I - t  i <~ $,i  = 1 . . . . .  k, tk+ I = T} (1.4) 

of the time segment [t °, T] form a siep-by-step control law for the first player (u(.),  As) which, forming 
o the realization u[t [.]T) according to the law 

U[t ]=U( t i , x [ t , [ ' ] t i ] ) ,  t i ~ t < t i + l ,  i =  I . . . . .  k (1.5) 

in a pair with the admissible realization t~[t°[ • ]T), generates, from the initial state (t °, x°[t. [. ]to]), the unique 
motion x(. I t°, x°[t, [.]to], u(. ), As, t~[t°[.]7")). 

We shall define the quantity 

Fu(t°,x°[t .[ .]t°],  u(.))=limsup sup ~(x([to[.]TI t° ,  x°[t.[.]t°], u(.), A 8, v[t°[.]T))) (1.6) 
8.1,0 AS ultO[.lT) 

which is termed the guaranteed result of the strategy u(.) of the first player. The opt imum guaranteed 
result of the first player will be 

F~ ° = Ft°, ( t° ,x°[t ,[ .] t°])  = infFu(t° ,x°[t .[ .] t°] ,u( . ))  (1.7) 
u(.) 

The values of the guaranteed result of the strategy ~(-) of the second player and the opt imum guaranteed 
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result of the second player are determined in a similar way (the replacement in (1.6) and (1.7) of the 
sEynbols u, ~0, sup and inf by ag, u, inf and sup, respectively). From this it follows that, for any initial state 
(t °, x°[t.[.]t°]) ~ G,  the following inequality holds 

F° 1> F° (1.8) 

When equality occurs in (1.8), the differential game with hereditary information (1.1), (1.3) is said 
to have the value 

F°( t  0 x°[t .[ .] t°])= F, 0 = F 0 

in the class of pure strategies. Here,  if inf and sup are achieved in (1.7) and in the analogous expression 
for F °, i.e. 

F°, = F,( t° ,x°I t , [ .] t°] ,  u°(.)), F O = F v (t°,x°[t ,[ .]t°],  v 0(.)) 

then the pair of strategies (u°(-), v°(.)) is said to form a saddle point of game (1.1), (1.3) and these 
strategies are termed optimal. 

Further the functional Hamilton-Jacobi  type equation in co-invariant derivatives [12] corresponds 
to the differential game with hereditary information (1.1), (1.3) considered. Along with difficulties related 
to the analysis of normal Hamilton-Jacobi equations [10, 11, 13, 14], this equation is complicated by 
features resulting from the delay effect. Like the approach described earlier [10], the corresponding 
definition of the generalized minimax solution of this equation is given. Under  conditions (lf)--(4/), the 
given minimax solution exists, it is unique and correct. A method is indicated for constructing the 
optimum strategies, and it is proved that the functional F ° : G ~-> R of the value of game (1.1), (1.3) is 
identical with the minimax solution of the associated equation. 

2. T H E  F U N C T I O N A L  H A M I L T O N - J A C O B I  T Y P E  E Q U A T I O N  IN 
C O - I N V A R I A N T  D E R I V A T I V E S  

Consider the functional 

q~(g) = q~(t,x[t.[.]t]) : G t---) R 

Letg* = (t*,x*[t.[ .]t*]) e G (t* < T), Lip (g*) be a set of functions y(.) E C([t., T] ,R n) identical 
withx*[t.[.]t*] on [t,, t*], each of which, with a certain (its own) constant, satisfies the Lipschitz condition 
in [t*, T]. We shall say [12] that the functional q~ is co-invariantly differentiable at the point g* with 
respect to Lip(g*) (ci-differentiable in g*) if a number Ot~(g*) and an n-vector Vq~(g*) exist such that, 
for any function y(-) e Lip(g*), the following equality is satisfied 

q~(t* + ~, y[t. [.]t* + ~]) - q0(t*, x* [t.[.]t* ]) = ~tq)(g* )~ + (Vq~(g*), y[t* + ~] - x* [t* ]} + 

+Oy(.)(~), ~ [ 0 ,  T - t * ]  (2.1) 

where oy(.)(O depends on the choice of y(.) ~ Lip(g*) (oy(.)(0/~ --> 0 when ~ -~ +0). 
The quantities atq~(g*) and Vq~(g*) will be termed co-invariant derivatives with respect to t and the 

gradient, respectively, of the functional q0 at the point g*. The functional ~ will be termed ci-differentiable 
on G if it is ci-differentiable at each point g = (t,x[t.[.]t] ~ G( t  < T). If  in this case the quantities 0t~(g) 
and Vq~(g) are continuous, we shall say that the functional q~ is continuously ci-differentiable. 

More detailed information on the properties, the computational methods and the applications of  
the co-invariant derivatives of the functionals can be found, for example, in [12]. 

Remark. The definition of the co-invariant derivatives is given above [see (2.1)] for functionals ~(t,x[t.[.]t]), defined, 
generally speaking, only on continuous functionsx[t.[.]t]), and it therefore differs from the corresponding definition 
given earlier [12, pp. 28-50], where co-invariant derivatives are naturally introduced for functionals defined on 
piecewise-continuous functions. Nevertheless, if some functional q~(t, x[t,[.]t]), defined on piecewise-continuous 
functions, is ci-differentiable at the pointg* = (t*,x*[t.[.]t]) E G with respect to Lip(g*) in the sense of [12], then 
its contraction ~6 on continuous functions will be ci-differentiable at g* in the sense of (2.1), and here the 
corresponding co-invariant derivatives will be identical. 

For system (1.1) we shall define the Hamiltonian H(t,  x It. [.]t], s): G × R ~ ~-~ R according to the equality 
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H(t,x[t.[.]t],s) = maxmin(s, f( t ,x[t .[ .] t] ,  u, v )) (2 .2)  
uEV u~U 

Let us consider the Hamilton-Jacobi  type equation in co-invariant derivatives 

~tq)(t,x[t.[.]t])+ H(t,x[t.[']t], Vcp(t,x[t.[.]t])) = 0, (t, x[t.[.]t]) ~ G, t < T (2.3) 

with the condition at the right-hand end 

q)(T,x[t.[.]T]) = ~(X[to[.]T]), x(.) ~ C([t., T], R n) (2.4) 

Note that, with requirements (lf)-(4f), Hamiltonian (2.2) will satisfy the following conditions. 
( ln)  For any s ~ R n, functional (t, x[t.[.]t], ~-~ H(t,  x[t.[.]t], s) is continuous on G. 
(2tt) For any compactum D C C([t*, T], R n) a number A > 0 exists such that, for all t ~ [to, T], 

s ~ Ilsll = 1 andx'( . )  • D,x"(.) ~ D, the following estimate (the Lipschitz condition with respect 
to x[t.[.]t]) holds 

[ H(t,x'[t.[.]t], s ) -  H(t,x"[t.[.]t], s) l ~< A max II x ' [x ] -x"[x]  II 

(3~) For any (t,x[t.[.]t]) ~ G ands ' ,  s" E {s ~ Rn: IIs II ~< 1}, the following inequality (the Lipschitz 
condition with respect to s) holds 

I H(t,x[t.[.]t],s ) -  H(t,x[t.[.]t],s )1-~ L(t,x[t,[.]t])II s ' -  s"  II 

where L(t ,  x[t.[.]t]) is a functional that is continuous on G and satisfies the estimate 

L(t,x[t.[.]t]) ~ ×(1 + max II x[x] II), (t,x[t.[.]t]) ~ G, × = const > 0 
t .  ~ ' ~ t  

(4H) For any (t, x[t.  [-]t]) e G, the function s ~-> H(t,  x[t.  [-It], s) is positively homogeneous, i.e. 

H(t,x[t.[.]t],ff.s) = ff.H(t,x[t.[.]t],s), o~ >~ 0 

Under  these conditions, a ci-differentiable functional satisfying relations (2.3) and (2.4) cannot exist. 
As in the case of the normal Hamilton-Jacobi equations, in problem (2.3), (2.4) the need arises to 
determine a suitable generalized equation. 

We shall define the minimax solution of  problem (2.3), (2.4). 
Suppose P and Q are certain non-empty sets (to fix our ideas it can be assumed that P and Q are 

subsets of certain finite-dimensional spaces), and the multivalued mappings 

( t,x[t.[.]t],q) ~ F* (t,x[t.[.]t], q) c R" 

(t,x[t.[.]t],p) ~ F.(t,x[t.[.]t], p) c R" 

where (t, x[t.[.]t],p, q) ~ G × P x Q, satisfy the following requirements. 
(1K) For any (t, x[t.[.]t]) ~ G, p ~ e and q ~ Q, the sets F*(t, x[t.[.]t], q) and F.( t ,  x[t.[.]t], p)  

are non-empty convex compactum in R n. A number a > 0 also exists such that the following estimate 
holds. 

max{ll f III f • F*(t,x[t .[.]t],q)u F.(t,x[t.[.]t],p)} <~ a(l + max II x[x] II) 

(t, x[t.[.]t], p, q) • G × P × Q 

(2K) For anyp e P and q ~ Q, the multivalued mappings 

(t, xlt.[.lt]) ~-> F* (t,x[t.[.]t],q), (t,x[t.[.]t]) ~ F.(t,x[t,[.lt], p) 

are semicontinuous from above the inclusion. 
(3K) For any (t,x[t.[.]t]) E G and s e R n, the following equalities hold 

sup min ( s , f )  = H(t,x[t.[.]t],s)= inf max ( s , f )  
q•Q ./E F* (t,x[t. [ .]t] .q) pc P fE  F. (t.x[t. [.]t], t,) 
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The set of pairs {Q, F*(.)} ({P, F.(.)}) satisfying requirements (lr)-(3g) will be denoted by K*(H)(K.(H)). 

Remark. With conditions (1H)-(4H), K*(/-/) * 0, K*(H) ~ 0. In particular, requirements (1K)-(3K) are satisfied 

P=Q=R" 

F* (t,x[t,[.]t],q) = I f  ~ F(t,x[t,[.]t]) : ( f ,q )  >~ H(t,x[t.[.]t],q)} 

F,(t,x[t,[.]t],p) = {f  ~ F(t,x[t,[.]t]) : ( f  ,p) <~ H(t,x[t,[.]t],p) } 

where F(t,x[t,[.]t]) = {f e R n : Ilfll <~ x/-2L(t, x[t,[.]t])}, L(t ,  x[t,[.]t]) from condition (3H). 

Suppose 

{Q,F*(.)} ~ K*(H), {P,F,(.)} ~ K.(H)  

We shall consider differential inclusions with delay 

dx[t]/dt ~ P ( t ,  x[t.[.]t], q) (2.5) 

dx[tl/dt e F.(t, x[t.[.]t], p) (2.6) 

Let 

g ° = ( t ° ,  x°[t ,[ ']t°])~G, p e P ,  q~.Q 

The solution of inclusion (2.5) [and accordingly (2.6)] with the initial condition t, ° will be understood 
o 0 with a fixed value of q(p), to be the function x(.) ~ C([t., T], An), identical with x (t.I.lt°l for it. t°l 

• " 0 % L J  J L ' J 

on an absolutely continuous functzon for [t ,  7] and, for almost all t E [ ,T] , t  o satisfyi'n~tg01 .inclusion (.52 
[and accordingly (2.6)]. The set of all such solutions will be denoted by X*(t°, x°[t* ILL'J- . . . .  a IF*~(X.(t  ° , ~  , ,  
x°[t,[']t°]p IF.)). By virtue of conditions ( lr)  and (2K), these sets will be non-empty compactum in C([t., 
7], R n) for any (t°,x°>[t.[.]t°],p, q) ~ G x P x Q. 

Definition. The  minimax solution (MS) of problem (2.3), (2.4) will be the continuous functional 
q~ : G J--> R, which satisfies boundary condition (2.4) and, for certain {Q, F*(.)} e K*(H), {P, F.(.)} 
K.(H), the pair of inequalities 

• * 0 sup mm[tp(t,x [t.[.]t])- ¢p(t , x°[t.[.]t°])] <~ 0 
( tO,xO[ t , [ . l tO] ; t ,q)  x (.) (2.7) 

where 

(t°,x°[t.[']t°]) ~ G, t ~ [t°,T], q ~ Q, x*(') ~ X*(t°,x°[t.[']t°], q l F*) 

and 

inf max[q)(t,x.[t.[.]t]) -¢p(t°,x°[t.[.]t°])l >~ 0 
ft°.xl~lt, l'lt°];t,p) x .  (.) (2.8) 

where 

( t° ,x°[t .[ .] t° l )~G, t~[ t ° ,T] ,  p e  P, x . ( . ) e  X,(t°,x°[t.I.]t°], Pl F,) 

It can be shown that, under conditions (ln)-(4n) imposed on the Hamiltonian H, and with the continuous 
boundary function s. An MS of problem (2.3), (2.4) exists, it is unique and possesses the following 
properties. It satisfies inequalities (2.7) and (2.8) for any {Q, F*(.)} ~ K*(H), {P, F,(.)} ~ K,(H). It 
is correct, i.e. continuously depends on the variation in the boundary condition and the Hamiltonian. 
The MS of problem (2.3) and (2.4) may not be ci-differentiable on G, but, on the one hand, at each 
point (t, x[t,[.]t]), where this solution is ci-differentiable, it satisfies Eq. (2.3), while on the other hand 
the continuous functional, continuously ci-differentiable on G and satisfying relations (2.3) and (2.4), 
is an MS. 

Remark. These assertions are substantiated chiefly by a plan set out earlier [10, pp. 13--40], taking into account 
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features associated with the delay effect and with the functionality of the argument of the solution required. The 
corresponding discussion beyond the scope of the present paper and is not give here. 

3. E X T R E M A L  S T R A T E G I E S  

We define the multivalued mappings 

F" (t, x[t, [']t],v ) = co {f = f ( t ,  x[t, [-]t], u,v ) I u ~ U} 

F u (t ,x[t,  [.]t],u) = co{f = f(t ,xtt ,[.]t],u,v )Iv ~ V} 

(t,x[t,[.]t], u, v) ~ G × U × V 

(3.1) 

where F is the convex shell of set F in R n. 
Taking of conditions (lf-4f) and equality (2.2) into account, it can be shown that for 

P = U ,  O = V ,  F*(.)=FU(.), F.( .)=Fv(-) 

requirements ( l r ) - (3r )  are satisfied [here, ( l r )  with a = × from (3y)], so that 

[ V, F"(.)} e K*(H), {U, Fv(')} ~ K,(H) 

Note, further, that multivalued mappings 

(t,x[t,[.lt]) v--> F"(t,x[t,[.]t],v ), (t,x[t.[.]t])i---> F v (t,x[t,[.]t],u) 

are equicontinuous (on the inclusion) on G with respect to ~ ~ F and u E U. 
Let ~(t, x[t.[.]t]) be the minimax solution of problem (2.2)--(2.4). 
Then, according to Section 2, the functional q~, in particular, satisfies inequalities (2.7) and (2.8), 

respectively, with Q = V, F*(-) = P'(-) and P = U, F , ( . )  = F.(.). 

Remark. Under these conditions, inequalities (2.7) and (2.8) express, respectively, the due properties of u and a~ 
stability [3-8] of the value functional of differential game (1.1), (1.3). 

Let gO = (t 0, xO[t.[.]to]) ~ G(t  o < T) be the initial state of system (1.1). We shall denote by 
X ° = X( t  °, x°[t,[.]t°)) the set of solutions stemming from gO of the differential inclusion 

dx[t]ldt  ~ { f  ~ Rn: II f II <- ×(1 + max II x[x] ID] (3.2) 
t .  ~ ' ~ t  

where × is from condition (3f). The set X ° will be a non-empty compactum in C([t,, T], /~) .  We shall 
assume that 

Wu(t ) = {w(.) ~ X 0 : (p(t, w[t,[.]t])<~ q)(t°,x°[t,[.]t°])} 

W u (t) = {w(.) ~ X 0 : tp(t, w[t.[.]t]) >t (p(t°,x°[t.[']t°])} (3.3) 

t ~  < t ~  < T 

By virtue of inequalities (2.7) (Q = V, F*(.) = b-~(-)), (2.8) (P = U, F.(-) = Fu(-)), condition ( l r )  
(a = ×) and inclusion (3.2), sets Wu(t) and Wv(t) are non-empty for any t E [t °, 7]. Functional q~ is 
continuous on G, and therefore Wu(t) and Wv(t) are compact in C([t,, T], Rn). 

The extremal strategy ue(') of the first player will be determined on the basis of the arbitrary sample 

u,(t,x[t.[.]t]) ~ arg min{ max (s°,f)} (3.4) 
u~U f e F  v ( t ,x[t , l .] t l ,u)  

where 

o = xEt l -  w°[tl, 0 w,, (.) ~ arg min { max II x[x]- w[x] Ill (3.5) Su 
w(.)E~,(t) t. ~x~t 

The extremal strategy ~e(') of the second player will be determined on the basis of the arbitrary sample 

v,.(t, xIt,[.]t]) ~ arg max{ min (su°, f)} (3.6) 
u ~V f eFU( t . x [ t , [ ' ] t ] , v )  
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s~ = w°[ t] -  x[t], w°(.) ~ arg min t max II x[x]- wfx] 11} (3.7) 
w(.)~w~ it) t, ~x~t 

Here, FU(-) and Fu(.) are from (3.1), and W~(t) and W~(t) are from (3.3). Requirement  (If) is satisfied. 
Therefore,  the necessary values of u, and v~ in (3.4) and (3.6) exist for any t e [t °, T]. 

4. T H E  M I N I M A X  S O L U T I O N  A N D  T H E  V A L U E  OF T H E  G A M E  

Theorem 1. For system (1.1), let requirements (lf)-(4f) be satisfied, and, in (1.3), let the functional: 
C([t0, T], R n) ~-~ R be continuous. Then, for any initial state 

(t °, x°[t,I']t°]) ~ G, t o < T (4.1) 

the differential game with hereditary information (1.1), (1.3) has the value F°(t °, x°[t. [.]to]) in the class 
of pure strategies. The functional (t °, x°[t. [.]to]) ~ F°(t °, x°[t,[.]t°]) is identical with the minimax solution 

of problem (2.2)-(2.4). The extremal strategies Ue(') and ue(.) form the saddle point of the game. 

Proof. To prove the theorem it is sufficient to show that, for any pair (t°,x°[t.[.]t°]) satisfying condition 
(4.1), the following inequalities hold 

Ft,(t°,x°[t.[.]t°],ue(.)) ~ to(t°,x°[t,[.]t°]) 
(4.2) 

F~ (t °, x ° It, [.]t o ].v, (.)) I> t0(t °, x 0 It. [.]/0 ] ) 

In fact, from these inequalities, if expression (1.7), the analogous expression for l~u and also inequality (1.8) are 
taken into account, we have the following chain of inequalities 

q)(t°,x°[t,[.]t°]) >- Fu(t°,x°[t,[.]t°]. ue(')) ~ FI 0 ;~ 

>~ Fv ° >~ ~ (tO,xO[t.[.]tO], V,(')) >>- to(tO,xO[t,[']tO]) 

which proves the theorem. 

The proofs of inequalities (4.2) do not  differ essentially. 
The scheme of the proof  of the first inequality of (4.2) is given below. 
Let condition (4.1) be satisfied and let X ° = X( t  °, x°[t.[.]t°]) [see (3.2)]. We put  

v(t,x[t,[.]t], w[t,[.]t]) = exp{-2A(t -  to) } max II x[x]-  w[x] II 2 (4.3) 

where A > 0 from condition (2f) with D = X °. 

L e m m a  1. For any pair (t °, x°[t,[.]t°]) satisfying condition (4.1) and a n y ,  > 0, 8 0 > 0 exists such that 
the following assertion holds. 

Supposex  ( . ) ~ X  ° ,w ( . ) ~ X  °, t  ~ [ t , 0 T ) , t ~ ( t , T ] a n d t - t  - -~8 .Supposes  = x  It ] - w  [t ] 
. , . , . , , 0 , and u,  = u,(t , x [t,[. ]t ]) from (3.4) with Su = s , and u,  = u,(t , w [t,[.]t ]) form (3.6) with s~ = s . 

Then, for anyx(-) ~ X,( t* ,  x*[t*[.]t*, u,[Fu) ~ X*(t*, w*[t.[.]t*], "OelFu)(Fu(. ) and Fu(. ) from (3.1)), 
we have x(.) ~ ~ and w(.) ~ ~it '°, and the following inequality holds 

v(t, x[t,[.]t], w[t,[.]t])<~ v(t*, x*[t.[.]t*], w*[t,[.]t*])+e(t-t*) (4.4) 

This lemma is provision using the plan set out earlier ([3, pp. 59-61]; see also [10, pp. 97-99]) and 
is omitted here. 

We take aq > 0. The functional cr : C([t0, T], R ~ ~ R is continuous, and X° = X(t  °, x°[t,[.]t°]) is a 
compactum in C([t,, T], Rn). Therefore, an ~ > 0 exists such that, for allx(.) e X" and w(.) e )t '° satisfying 
the condition 

max II x[x]-  w[x] II ~< 
t .  ~ x ~ T  
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We shall assume that  
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I ~(X[to[ .]T])- t~(W[to[ .]T])  l <~ rl 

e = ~2 exp{-2A(T - t o)} I (T  - t o) 

(4.5) 

(4.6) 

For  this e > 0, we obtain 8 ° > 0, for  which the assertions of  L e m m a  1 are satisfied. For  ~ e (0, 80], 
we shall adopt  the subdivision As(1.4). Consider  the control  law for the first player (ue(.), As). Suppose 
that  some permissible realization of  l)[t°[-]T) has occurred,  and that  the mot ionx*( . )  = x( .  [t°',x°[t.[.]t°], 
ue( ' ) ,  As, t)[t°[']T)) of  system (1.1) has been  realized. By virtue of  requ i rement  (3f) and (3.2), 
x*(.) E X". We put  

dist[x[t,[.]t], W,(t)J= min max IIx[x]-w[x]l l  
,,,(-)E % . ) , .  ~ .~t  (4 .7)  

x ( ' ) ~ X  °, t ~ [ t  o ,T]  

where  Wu(t )  is f rom (3.3). 
For  any i = 1, . . . ,  k + 1, the following inequali ty is satisfied 

dist[x*lt,[.lt/], W,, (t  i)] ~< ~ - t o) exp{A(ti - t o) } (4.8) 

which can be proved by induct ion f rom i = 1 to i = k + 1. 

For i = 1 we have q = t o andx*[t ,[ .]t  °] = x°[t,[']t°], and therefore x*(.) ~ W~(t°), and inequality (4.8) (i= 1) is 
satisfied 

In addition, we shall assume that inequality (4.8) holds when i = j (1 ~< j ~< k) and show that (4.8) is then satisfied 
f o r / = j  + 1. 

We shall assume that w*(.) = w°(.) from (3.5) with t = tj; s* = x*[tj] - w*[tj], u,  = u,(tj, x*[t,[.]tj]) from (3.4) 
with s o = s* and ve = ~,(tj, w*[t,[.]tj]) from (3.6) with s o = s*. Then w*(-) E W~(tj) C X ° and, on the assumption 
of induction, and taking relation (4.3) into account, we have 

V(lj. x'It,[.]t)], w*[t,[.]tjl) <~ 6(tj - t  O) (4.9) 

By (2.7) ( a  = V, F*(.) = F~(.)), a function w(.) E X*(tj, w*[t,[.]tj], u, IP') exists such that 

(P(t i, w*l t,[.]t j ]) I> ~p(t.i+l , w[t,[']t i+l ]) 

Since w*(.) E Wu(tj), then by virtue of (3.3) we have 

~(tj. w*[t,I.lt) 1) ~< O(t 0, x°[t,[']t01) 

From this we obtain the inequality 

(p(t i+l, wlt,  t.lt j÷l 1) <~ ~ptt °, x°| t ,[ ' l t°])  (4.10) 

Let 

X(.)E X, ( t j+l ,x* l t ,  I']tj+ll, Ue I Fo ) 

By the definition of motion 

x* (.) = x(. I t °. x °[t,l']t ° l, % ('), AS, v [t o [-]T)) 

[see (1.4), (1.5) and (3.4), (3.5)] and (3.1), the function x*(.) for almost all 
inclusion 

dx*lxl /  dx ~ b~ (x, x*[t,[.]xl, u e) 

E [tj, tj+l] satisfies the 

Therefore 

x(.) s X, Oj. x*[t,[.kj ], u~ 1 F, ) 
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Now, note that, for t* = tj, t = tj+l and thex*(.), w*(.),x(-) and w(.) selected above, all the requirements of Lemma 
1 are satisfied. 

From (4.4) (t* = tj, t = tj+l), taking account of relations (4.3) and (4.9) and the equality 

x[t,[.lt j÷l ] = x*[t.[.lt i+~ ] 

we derive 

max II x*lx]- w[zl II <~ 4E( / j+ I  - to) explA(tj+= - t 0)} (4.11) 
I .  ~ ' ~ l j +  I 

Since, by virtue of (3.3) and (4.10), w(-) e W,(tj+l), then from (4.7) (t = §+1) it follows that the necessary inequality 
(4.8) is correct with i = j + 1. By mathematical induction, inequality (4.8) is satisfied for any i = 1 . . . . .  k + 1. 

From (4.8) (with i = k + 1), if we take (4.6) into account and select the number  ~ > 0 [see (4.5)], it 
follows that  a function w0(.) ~ W~(T) exists for which the inequality 

I ~(x*l to[ ']T])  - cr(Wo[to['lT}) I <~ rl 

is satisfied. By relations (2.4) and (3.3) we have 

ci(Wo[to[.]T]) = ~ ( T ,  Wo[t.[.]T]) <~ tp(t O, x°[t .[ .] t°])  

Therefore,  the following inequality holds 

~(x* [t0[.lT]) ~< tp(t °, x°[t.[.]t  ° ]) + ~3 (4.12) 

Remember  that  

x*(.)  = x(. } t °,  x°[t .[ .] t°],  u~(.), A 8, u [t°[.]T)) 

and here ~ ~ (0, ~0], z~ (1.4) and the permissible realization v[t°[-]T) were chosen arbitrarily. 
Consequently,  f rom (4.12), by equality (1.6) it follows that 

F,,( t° ,x°[t ,{ .] t°] ,  u,,(.)) <~ cp(t °,  x°[ t , [ ' ] t °] )+ q 

Since the number  "q > 0 was also chosen arbitrarily, the first inequality of (4.2) to be proved follows 
from this. 

The second inequality of (4.2) is proved in a similar way with obvious changes. 

Remark.  In the practical construction of extremal strategies, depending on the specific properties of system (1.1) 
and index (1.3), in (3.5) and (3.7) it is otherwise convenient to assess the closeness ofx(.) and w(-). Here it is necessary 
to check that, for an appropriately selected functional 9 of type (4.3), an assertion similar to Lemma 1 is satisfied. 

Theorem 1 and the properties of the minimax solution of  problem (2.3), (2.4) that  were given in 
Section 2 enable us to conclude that functional equations (2.2) and (2.3) can (by analogy with the theory 
of ordinary differential games [1-4, 10, 11]) be t reated as the main equations of differential games with 
hereditary information. 

5. E X A M P L E  

Suppose 

n=2,  .r=(.rl.x2)~ R 2, h=const>0,  t 0=0, t , = - h  

We shall examine the differential game for a system with delay 

dr l l t l /d t  =l]x2lt-h l. da'2It]/dt =otxl[ t]+b(t)u+u,  O ~  t <~ T (5.1)  

where a and 13 are unknown numbers, and the function b(t) is continuous and satisfies the conditions Ib(t)[~>l 
with t ~ [0, t'] and Ib(t) l~<l with t ~ [t', 7] (0 < T' ~< T), lul ~ 1 and It) I ~< 1, with the quality index 
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y ,  = maxfl x2lfl]t. Ix2[t2ll}+tx~IT]l (5.2) 

where t 1 e [0, t ' )  and t 2 e (tl, t '] are specified instants of  time. 
Let  the matrix function 

= Yz,[~] V 2 2 [ ~ l l l  

be such that  

~[~1 = 0 w h e n  ~ < 0, W[0]= E, 
a,e[~,] = Pvz,  [~,- h] [~¥22[~- hl I 

I when ~ ~ o 

We put 

[W21 [tj - t]x I [t] + W22[tj - t]x 2[t]+ 
| t+h 

y. i ( t ,x[ t ,[ .] t])=t+ S'tl121[tj-x][$x2[x-h]dx, i f  t<t. i;  j = l ,  2 

Lx2[,j ], it ,j 
t+h 

y3(t. x[t,[.]t]) = ¥11[T-t].x'l[t]+ ~12tT- t lx2[t]+ I ¥11[T-x]~Jx2[ x -h]dx  
! 

1=(l l ,12,13)~ R 3, g( l )=  max{16 1+112 I, I/3 I} 

X(t..~'[t,l.ltl, l) = 6 Yl (t. x[t,[.lO) + 12y2 (t, x[t, [.ltl) + 13Y3 (t, x[t, [-]tl) + 

1' 
- I J 11¥22[fi - xl + 12~:~2[t2 - xl + 1.~1217" - x] J (I b(x) I - I )dx  + 

! 
T 

+ +I  i ~ t 2 [ r - x l ( I - I b ( x ) l ) l d x ,  if  t < V  
t" 

7" 

I 1 ~ 2 [  r - ~ l ( l - l b ( ~ ) l ) l d ~ "  if  t ' ~ t  
! 

Then,  the functional 

F,°(t °, x°It , [ . l t°])  = max Z(t °, x°[t ,[ . l t°],  l). (t ° ,  x°[t,[.]t°]) e G 
I.t(I)~l 

(5.3) 

will be the value of  game  (5.1), (5.2), which can be derived, for example,  by construction from [7-9]. Functional 
(5.3) is the minimax solution of  the following equation in co-invariant derivatives 

ate0 + v l ~013x2 it - hl + V 2~po~xl [tl+ I V2~o I (1- I b(t) I) = 0 

where  

a t9  = aAo(t, x[t,l.]t]), (v ig ,  v2~0) = v~0(t, xit,[.]t]) 

provided that  

~p(T, xIt,  [.]T]) = max {I x2itl ] I, Ix2 It2 ]1}+ I xj [T]I 

on the right-hand end. This can be verified, assuming, for example, that 

P = Q = [ - I ,  t] 

F* (t, x[t,[.]t], q) = {f = ([]x 2[t - h], ~xx I [t]+ b(t)u + q) ll u I<~ I} 

F,(t, xlt,t']t], p) = {f = ( ~ 2 [ t -  hi, c~x I It] + b(t)p + u ) l l u  I ~< 1} 

By the construction from Sections 3 and 4, and taking account of  relations (5.1)-(5.3), we establish that the 
strategies 



where 

and 

where 

A H a m i l t o n - J a c o b i  t ype  e q u a t i o n  in c o n t r o l  p r o b l e m s  wi th  h e r e d i t a r y  i n f o r m a t i o n  

u e (t, x[t,[.]t] = -signlb(t)(l~'~2 ~ [fi - t] + l~'gt22 It 2 - t] + l~'~l 2 [ T -  el)] 

(l~', t-~ ~, l[' ) e arg max {X(t. x[t, [-]t], 1) - e,,, (t, xIt ,  [.]t])g(/) } 
- " l a ( I ) ~ l  

e,,(t, X[t.[.]t]) = max {0, F°( t ,  x[t. [ . I t ] ) - F ° ( t  O, x°[t.[.]t 0 ])} 

v ~(t, x[t,[.]tl) = s ign[ (~22I t l  - tl  + ~ ~22 It2 - t] + ~ ~ I 2 [ T -  t]] 
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( ~ ,  ~ ,  ~ ) ~ arg max {X(t, xIt.[.]t], 1) + ~ (t, x[t, [.lt])B(/) } 
I1(/)~<1 

ev (t, X[t.[']t]) = max{0, FO(t °, xO[t.l.]tO]) - FO(t, x[t,[.]t])} 

will be opt imal  in game (5.1), (5.2). 
Compute r  modell ing of the control  process with 

a = ~ = l ,  b ( t ) = 2 - t / 2 ,  h = l ,  t l = l ~ ,  t2= ~, r = 4  

t o = 0, xO[-l[.]0] = {(xO[x] = - 2 .  xOtx] = 1 +sin2gx),  - I ~ x ~< O} 

by uniform subdivision of the t ime interval [0, 4] with step ~i = 0.01 gave the following results. 
The  a priori est imated value of  the game F ° = ~ (0, xU[-1 [-]0]) -~ 0.939. By the action of a pair  of strategies 

(u~(.), 19~(.)), the result "1. = 0.935 = F ° was obtained.  By the action of u~(.) in a pair  with ~(.) = sin 4~rt, ~/. = 
0.638 < F ° was obtained.  By the action oft)*(-) in a pair  with u(-) = sin 4~rt, ~ .  = 9.758 > F .  was obtained.  

Th i s  r e s e a r c h  w a s  s u p p o r t e d  f inanc ia l ly  by  the  R u s s i a n  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (97-01-00160) .  
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